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I derive a single PDE that describes the dynamics of fluids in state space. Then the similarity
between that PDE and equations of fluid mechanics is demonstrated by using it to deriving a set
of three equations analogous to the mass, internal energy and Navier-Stokes equations. Finally I
demonstrate that for a fluid with particles following the Maxwell-Boltzmann distribution the set of
analogous equations reduces to the equations of inviscid flow.

I. INTRODUCTION

Fluids consist of a large number of interacting par-
ticles, presumably the fluid mechanics observed at a
macroscopic level is a result of the interactions occurring
at a microscopic level. If the dynamics of each particle
was know it should be possible in principle to determine
the macroscopic dynamics of the fluid from the collective
motion of the particles.

II. STATE SPACE DYNAMICS

Assuming the dynamics a particle is defined by the
acceleration and that the acceleration of the particles is

given by the potential φ such that ~a = ~∇ · φ, then the
equations of motion become

d

dt

(
~x

~̇x

)
=

(
~̇x

−~∇φ

)
For a system of n particles where the ith particle is

located at ~xi, the potential can in principle depend on
the location of all of the particles, such that the potential
for the ith particle is φi = φ(~xi, ~x1, ~x2, ...~xi..., ~xn−1, ~xn).
Then for this system the equations of motion for each
particle is given by the system of equations

d

dt

(
~xi
~̇xi

)
=

(
~̇xi

−∂~xi
φi

)
(1)

Moving over to a state space description of the sys-
tem, the state space has six coordinates given by the
orthogonal coordinate vectors ~x and ~̇x. Given a time
dependent density distribution defined over state space
σ = σ(~x, ~̇x, t), such that the total mass at the time

t is M(t) =
∫∞
−∞

∫∞
−∞ σ(~x, ~̇x, t)d3xd3ẋ. The system of

discrete particles described by equation (1) then be de-
scribed by the distribution

σ(~x, ~̇x, t) = m

n∑
i=0

δ(~x− ~xi) · δ(~̇x− ~̇xi)
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where m is the mass of the particles, and δ(~x) is the Dirac
delta distribution in 3-space. For this system the six

component state space velocity is ~v =
〈
~̇x,−~∇φ(~x, ρ, t)

〉
,

where the potential φ is defined as φ(~xi, ρ, t) = φi and

ρ(~x, t) =
∫∞
−∞ σ(~x, ~̇x, t)d3ẋ . Assuming the number of

particles in the distribution is constant, then dM
dt = 0.

Since there are no sources or sinks for the particles,
the density distribution is constrained by the continuity
equation

d

dt

∫
V

σ(~x, ~̇x, t)d3xd3ẋ+

∮
∂V

σ(~x, ~̇x, t)~v · d~a = 0

where V is an arbitrary volume in state space, ∂V is
the surface of the arbitrary volume, ~v is the state space
velocity and d~a is a surface element in state space. Rear-
ranging the terms and using the divergence theorem the
continuity equation can be rewritten in the form∫

V

(
∂tσ + ~∇ · (σ~v)

)
d3xd3ẋ = 0

Since the integral equals zero over any arbitrary vol-
ume V , then the integrand must be zero

∂tσ + ~∇ · (σ~v) = 0

Finally the independence of ~x and ~̇x can be used to
rewrite the continuity equation in the final form, in this
case it is written using Einstein notation

∂tσ + ẋi∂xi
σ − (∂xi

φ) ∂ẋi
σ = 0 (2)

While the derivation of equation (2) was motivated
using a discrete collection of particles the equation is
not restricted to systems of discrete particles. As long
as the dynamics in state space is determined by ~v =〈
~̇x, ~∇φ(~x, ρ, t)

〉
and there are no sources or sinks for the

state space density, then any state space density function
or distribution is described by equation (2).

Assuming the motion of individual particles, in a fluid
described by fluid mechanics, is described by equation (1)
and assuming that the number and mass of the particles
is invariant, then the dynamics of the state space distri-
bution is described by equation (2). If these assumptions
are true for any fluid, then equation (2) must be capable
of reproducing the behavior of fluid mechanics.
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III. FLUID MECHANICS MASS EQUATION:
CONSERVATION OF MASS

The state space density function σ is defined such that
M =

∫∞
−∞

∫∞
−∞ σ(~x, ~̇x, t)d3xd3ẋ. Define the mass density

ρ as ρ(~x, t) =
∫∞
−∞ σ(~x, ~̇x, t)d3ẋ. Also define the bulk ve-

locity ~u as ui = 1
ρ(~x,t)

∫∞
−∞ xiσ(~x, ~̇x, t)d3ẋ =

∫∞
−∞ xi

σ
ρ d

3ẋ.

The integral of equation (2) over velocity space is∫ ∞
−∞

(∂tσ + ẋi∂xi
σ − (∂xi

φ) ∂ẋi
σ) d3ẋ = 0

Splitting up the integral, pulling out factors and oper-
ations that are independent of ẋi puts the equation into
a form where some terms can be evaluated. Then apply-
ing the divergence theorem and evaluating the simplified
integrals results in the equation

∂tρ+ ∂xi
(uiρ)− (∂xi

φ)

∮
σdai = 0

where dai is the ith component of the surface element,
and

∮
σdai is the surface integral over all of velocity

space. Assuming σ(~x, ~̇x, t) drops to zero faster than |~̇x|2
then the surface integral converges to zero. Given the sur-
face integral does converge to zero, the resulting equation
is ∂tρ + ∂xi

(uiρ) = 0. When written in vector notation
it becomes

∂tρ+ ~∇ · (~uρ) = 0 (3)

which is the conservation of mass equation from fluid
mechanics.

IV. CONSERVATION OF MOMENTUM

To get an equation for the conservation of momentum,
multiply equation (2) by ~̇x before integrating over veloc-
ity space.∫ ∞

−∞
ẋi
(
∂tσ + ẋj∂xj

σ −
(
∂xj

φ
)
∂ẋj

σ
)
d3ẋ = 0

After simplifying the equation, applying the product
rule and divergence theorem it can be written in the form

∂t (uiρ) + ∂xj

(∫ ∞
−∞

ẋiẋjσd
3ẋ

)
−
(
∂xj

φ
) ∮

ẋiσdaj +
(
∂xj

φ
)
ρδij = 0

where
∮
ẋiσdaj is a surface integral over all of velocity

space and δij is the Kronecker delta function. Assuming

σ(~x, ~̇x, t) drops to zero faster than |~̇x|3 then the surface
integral converges to zero. Given the surface integral
does converge to zero

∂t (uiρ) + ∂xj

(∫ ∞
−∞

ẋiẋjσd
3ẋ

)
+ ρ∂xi

φ = 0 (4)

A. Integrating the velocity tensor product

The velocity tensor product term is
∫∞
−∞ ẋiẋjσd

3ẋ.

Since the bulk velocity is defined as ui =
∫∞
−∞ ẋi

σ
ρ d

3ẋ

let ∫ ∞
−∞

ẋiẋjσd
3ẋ =

∫ ∞
−∞

ẋi
σ

ρ
d3ẋ

∫ ∞
−∞

ẋjσd
3ẋ

−
∫ ∞
−∞

ẋi
σ

ρ
d3ẋ

∫ ∞
−∞

ẋjσd
3ẋ+

∫ ∞
−∞

ẋiẋjσd
3ẋ

Evaluating the first term and combining the other two
terms produces the equation∫ ∞
−∞

ẋiẋjσd
3ẋ = ρuiuj

+
1

2

(∫ ∞
−∞

(ẋi − ui) ẋjσd3ẋ+

∫ ∞
−∞

(ẋj − uj) ẋiσd3ẋ
)

If we define a symmetric tensor A such that Aij =

− 1
2

(∫∞
−∞ (ẋi − ui) ẋjσd3ẋ+

∫∞
−∞ (ẋj − uj) ẋiσd3ẋ

)
,

then the integral of the velocity tensor product simplifies
to the equation∫ ∞

−∞
ẋiẋjσd

3ẋ = ρuiuj −Aij

Let p = − 1
3Aii and define the traceless tensor B such

that Bij = Aij − 1
3Akkδij , so the velocity tensor product

term can be written as∫ ∞
−∞

ẋiẋjσd
3ẋ = ρuiuj + pδij −Bij

B. Fluid mechanics momentum equation:
Navier-Stokes equations

Substituting the integral of the velocity tensor product
into equation (4)

∂t (uiρ) + ∂xj (ρuiuj + pδij −Bij) + ρ∂xiφ = 0

Expand the partial derivatives involving the bulk ve-
locity and canceling terms leading with ui by substituting
in equation (3). Then the equation can then be written
in vector notation as

ρ
(
∂t~u+ ~u · ~∇~u

)
= −~∇p+ ~∇B − ρ~∇φ (5)

Assuming that for a reasonable model of a fluid the
tensor Aij evaluates to be the total stress tensor σij ,
then equation (5) is the Navier-Stokes equations.
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V. CONSERVATION OF ENERGY

The total energy of the system is Etot =∫∞
−∞

∫∞
−∞

(
1
2 ẋ

2
i + φ(~x, ρ)

)
σ(~x, ~̇x, t)d3xd3ẋ. Let us define

~v = ~̇x − ~u, so then ẋ2i = v2i + 2ẋiui − u2i . In order to
derive an equation for the conservation of energy equa-
tion in position space, equation (2) must be multiplied by
1
2 ẋ

2
i +φ before integrating. To make the derivation of the

conservation of energy simpler we can use the linearity of
integration to break the conservation of energy equation
into a kinetic energy component and a potential energy
component.

A. The kinetic energy component

Multiplying equation (2) by 1
2 ẋ

2
i then integrating over

velocity space, the resulting relation is∫ ∞
−∞

1

2
ẋ2i
(
∂tσ + ẋj∂xj

σ −
(
∂xj

φ
)
∂ẋj

σ
)
d3ẋ = 0

After simplifying the equation, applying the product
rule and divergence theorem, it can be written in the
form

∂t

(∫ ∞
−∞

1

2
ẋ2iσd

3ẋ

)
+ ∂xj

(∫ ∞
−∞

1

2
ẋ2i ẋjσd

3ẋ

)
−
(
∂xj

φ
)(∮ (1

2
ẋ2iσ

)
daj −

∫ ∞
−∞

σẋjd
3ẋ

)
= 0

where
∮ (

1
2 ẋ

2
iσ
)
daj is a surface integral over all of veloc-

ity space. Assuming σ(~x, ~̇x, t) drops to zero faster than

|~̇x|4 then the surface integral converges to zero. Eval-
uating integrals and rearranging the equation given the
surface integral does converge to zero, results in the equa-
tion

∂t

(∫ ∞
−∞

1

2
ẋ2iσd

3ẋ

)
+∂xj

(∫ ∞
−∞

1

2
ẋ2i ẋjσd

3ẋ

)
+ujρ∂xj

φ = 0

After expanding the equation by using the definition
of vi and rearranging, use the result

∫∞
−∞ ẋiẋjσd

3ẋ =
ρuiuj + pδij −Bij from the momentum equation deriva-
tion to write the equation in the form

∂t

(∫ ∞
−∞

1

2
v2i σd

3ẋ+
1

2
u2i ρ

)
+ ujρ∂xjφ

+ ∂xj

(∫ ∞
−∞

1

2
v2i ẋjσd

3ẋ+
1

2
u2iujρ+ puj − uiBij

)
= 0

(6)

B. The potential energy component

Multiplying equation (2) by φ and then integrating
over velocity space, the resulting relation is∫ ∞

−∞
φ
(
∂tσ + ẋj∂xjσ −

(
∂xjφ

)
∂ẋjσ

)
d3ẋ = 0

After rearranging and simplifying use the result that∫∞
−∞ ∂ẋj

σd3ẋ =
∮
σdaj = 0, from the derivation for the

conservation of mass equation, to get

φ∂tρ+ φ∂xj (ujρ) = 0

Applying the product rule produces the form

∂t (φρ)− ρ∂tφ+ ∂xj
(ujρφ)− ujρ∂xj

φ = 0 (7)

C. Total energy density dynamics

The potential φ can be split into two components,
the internal potential φin and a potential due to the
external environment φext, such that φ = φin +
φext. Let us define two energy densities, the inter-
nal energy density e and the external energy den-
sity η, such that e(~x, t) =

∫∞
−∞

(
1
2v

2
i + φin

)
σd3ẋ and

η(~x, t) =
∫∞
−∞

(
1
2u

2
i + φext

)
σd3ẋ =

(
1
2u

2
i + φext

)
ρ.

From these definitions the total energy is then Etot =∫∞
−∞ (e+ η) d3x. Adding the two energy components

from equation (6) and equation (7) produces the equation

∂t

(∫ ∞
−∞

1

2
v2i σd

3ẋ+
1

2
u2i ρ

)
+ ujρ∂xj

φ

+ ∂xj

(∫ ∞
−∞

1

2
v2i ẋjσd

3ẋ+
1

2
u2iujρ+ puj − uiBij

)
+ ∂t (φρ)− ρ∂tφ+ ∂xj (ujρφ)− ujρ∂xjφ = 0

After simplifying and splitting φ into its two compo-
nents and evaluating terms using the energy density def-
initions the equation can be written as

∂t (e+ η)− ρ∂tφ+ ∂xj

(∫ ∞
−∞

1

2
v2i ẋjσd

3ẋ

+ ujφinρ+ ηuj + puj − uiBij
)

= 0

Using the definition of vi and applying the definition
internal energy density the relation is

∂t (e+ η) + ∂xj
(euj + ηuj)

+ ∂xj

(∫ ∞
−∞

1

2
v2i vjσd

3ẋ+ puj − uiBij
)
− ρ∂tφ = 0

Defining the vector ~C as Cj =
∫∞
−∞

1
2v

2
i vjσd

3ẋ and
using it to simplify the equation results in the form

∂t (e+ η) + ∂xj
(euj + ηuj)

+ ∂xj
(Cj + puj − uiBij)− ρ∂tφ = 0

(8)

Equation (8) describes the dynamics of the total energy
density. Using equation (5) an equation for the external
energy density can be derived. Which when combined
with equation (8) will produce an equation for the inter-
nal energy density.
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D. External energy density dynamics

To generate an equation for the external energy den-
sity, let us multiply equation (5) by ui.

ui
(
ρ∂tui + ρuj∂xj

ui + ∂xi
p− ∂xj

Bij + ρ∂xi
φ
)

= 0

Rearranging and applying the product rule, the equa-
tion becomes

∂t

(
1

2
u2i ρ

)
− 1

2
u2i ∂tρ+ ∂xj

(
1

2
u2i ρuj

)
− 1

2
u2i ∂xj

(ρuj)

+ ui
(
∂xi

p− ∂xj
Bij + ρ∂xi

φ
)

= 0

After collecting terms of 1
2u

2
i , adding a potential energy

component ∂t (ρφext − ρφext)+∂xj (ujρφext − ujρφext) =
0, applying the product rule and using the definition of
η the equation can put in the form

∂tη − ρ∂tφext −
(

1

2
u2i + φext

)(
∂tρ+ ∂xj (ρuj)

)
+ ∂xj (ηuj)

− ujρ∂xjφext + ui
(
∂xip− ∂xjBij + ρ∂xiφ

)
= 0

Canceling terms by substituting in equation (3) and
relabeling contracted indices results in the equation

∂tη + ∂xj (ηuj)− ρ∂tφext
+ uj∂xj

p− ui∂xj
Bij + ujρ∂xj

φin = 0
(9)

E. Fluid mechanics energy equation: Internal
energy equation

To remove the external energy density from equation
(8) subtract equation (9) from it, resulting in the equa-
tion

∂t (e+ η) + ∂xj
(euj + ηuj)− ρ∂tφ

+ ∂xj
(Cj + puj − uiBij)

− ∂tη − ∂xj
(ηuj) + ρ∂tφext

− uj∂xjp+ ui∂xjBij − ujρ∂xjφin = 0

After applying the product rule and simplifying, the
equation can be written as

∂te+ ∂xj
(euj)− ρ∂tφin − ujρ∂xj

φin

+ ∂xj
Cj + p∂xj

uj −Bij∂xj
ui = 0

rearranging the equation and putting it in vector nota-
tion, the equation then can be written in the from

∂te+ ~∇ · (e~u) = ρ∂tφin + ρ~u · ~∇φin
− ~∇ · ~C − p~∇ · ~u+B · ~∇~u

(10)

Assuming that for a reasonable model of a fluid
the tensor Aij evaluates to be the total stress tensor

σij and the vector Cj reduce a term including the
gradient of the temperature, then equation (10) is a
form of the fluid mechanics internal energy equation.

VI. FLUID MODEL: MAXWELL-BOLTZMANN
DISTRIBUTION

Assuming the speed of particles in a fluid follow a
Maxwell-Boltzmann distribution, then the velocity dis-
tribution of the fluid is a normalized Gaussian distri-
bution in three dimensional velocity space. For a fluid
element with a non-zero bulk velocity assume that the
velocity distribution is simply a normalized Gaussian
with a non-zero mean value. Given these assumptions
the velocity distribution at any point is σ(~x, ~̇x)/ρ(~x) =(

m
2πkT

)3/2
e−

m(xi−ui)
2

2kT , where m is the mass of the par-
ticles the fluid is made from, k is Boltzmann’s constant
and T = T (~x, t) is the thermodynamic temperature. Also
assume that the potential φ only explicitly depends on ~x
and ρ. So in this model φ = φ(~x, ρ) and the state space
density distribution is,

σ(~x, ~̇x) = ρ(~x)
( m

2πkT

)3/2
e−

m(xi−ui)
2

2kT (11)

As defined earlier the tensor A is

Aij = −1

2

(∫ ∞
−∞

(ẋi − ui) ẋjσd3ẋ+

∫ ∞
−∞

(ẋj − uj) ẋiσd3ẋ
)

When i is not equal to j the integral is Aij = 0, when
i is equal to j the integral is Aij = −kTρ/m, so the
full tensor is Aij = −kT ρ

mδij . Using the ideal gas law
PV = NkT , since ρ/m = N/V where N is the number
of particles and V is the volume, then Aij = −Pδij ,
p = − 1

3Aii = P and Bij = Aij − 1
3Akkδij = 0.

The vector ~C is defined as Cj =
∫∞
−∞

1
2v

2
i vjσd

3ẋ, eval-
uating the integral results in the equation Cj = 0. So
given the state space density function (11) the equations
of fluid mechanics derived from equation (2) are

∂tρ+ ~∇ · (~uρ) = 0

ρ
(
∂t~u+ ~u · ~∇~u

)
= −~∇P − ρ~∇φ

∂te+ ~∇ · (e~u) = ρ~u · ~∇φin − P ~∇ · ~u

These equations are equal to the conservation of mass,
internal energy density and Navier-Stokes equations in
the case of inviscid flow.


